Overview
Tools for computing inequality estimates in the LIS Data Center LISSY environment.
It allows users to: * Read LIS data within the LISSY environment. * Carry out commonly performed data cleaning tasks. * Compute and plot estimates from microdata.
Version
This package is currently in Beta version.
For questions and help, email usersupport(add)lisdatacenter.org
Installation
The package is already installed in LISSY by the LIS Data Center team.
You can install the package locally to work with your own data or with the LIS Sample Datasets from this GitHub repo with:
devtools::install_github("https://github.com/LIS-Cross-National-Data-Center/lissyrtools")
Usage
LISSY version
library(lissyrtools)
library(magrittr)
# Read the datasets
files_h <- read_lissy_files(c("ca14h", "ca15h", "ca16h", "ca17h", "ca18h", "ca19h"))
files_p <- read_lissy_files(c("ca14p", "ca15p", "ca16p", "ca17p", "ca18p", "ca19p"))
# Merge household and person-level files
lissy_datasets <- merge_dataset_levels(files_h, files_p)
# Clean target variables:
## pi11
lissy_datasets_transformed <- lissy_datasets %>%
transform_false_zeros_to_na("pi11") %>%
transform_negative_values_to_zero("pi11") %>%
transform_zeros_to_na("pi11") %>%
transform_top_code_with_iqr("pi11") %>%
transform_bottom_code_with_iqr("pi11") %>%
transform_adjust_by_lisppp("pi11") %>%
transform_restrict_age("pi11", from = 16, to = 64)
## dhi
lissy_datasets_transformed <- lissy_datasets_transformed %>%
transform_false_zeros_to_na("dhi") %>%
transform_negative_values_to_zero("dhi") %>%
transform_top_code_with_iqr("dhi") %>%
transform_bottom_code_with_iqr("dhi") %>%
transform_equivalise("dhi") %>%
transform_adjust_by_lisppp("dhi")
# Compute indicators
print_indicator(lissy_datasets_transformed,
variable = "dhi",
indicator = "gini",
na.rm = TRUE)
print_indicator(lissy_datasets_transformed,
variable = "pi11",
indicator = "gini",
na.rm = TRUE)
# Compute and plot indicators
plot_indicator(lissy_datasets_transformed, variable = "dhi",
indicator = "gini",
na.rm = TRUE)
Local version
When working with lissyrtools
locally, use read_lissy_files_locally()
instead of read_lissy_files()
. The file names then be passed with the ccyydl
(e.g. ‘us16ih’) format instead of ccyyl
(‘us16h’). The path to the files should also be specified. E.g.
files_h <- read_lissy_files_locally(c("it14ih", "us16ih", "mx18ih"),
path_to_files = "path/to/your/directory/")
files_p <- read_lissy_files_locally(c("it14ip", "us16ip", "mx18ip"),
path_to_files = "path/to/your/directory/")
Documentation and Support
Please visit https://lis-cross-national-data-center.github.io/lissyrtools/ for documentation and vignettes with examples.