Compute Weighted Atkinson Across a List of Data Frames
run_weighted_atkinson.Rd
Compute Weighted Atkinson Across a List of Data Frames
Arguments
- data_list
A named list of data frames, (e.g., across countries or years).
- var_name
A string specifying the variable name (e.g., "dhi", "pilabour") to compute the Atkinson index on.
- wgt_name
An optional string specifying the weight variable to be used. If
NULL
, equal weights are assumed.- epsilon
A positive inequality aversion parameter. Must be greater than 0.
- na.rm
Logical. If
TRUE
, missing values invar_name
andwgt_name
are removed.
Value
A named list. Each list element is named by country and contains a named numeric vector, where the names are years and the values are the computed statistics.
Examples
if (FALSE) { # \dontrun{
library(lissyrtools)
library(purrr)
datasets <- lissyrtools::lissyuse(data = c("de", "es", "uk"), vars = c("dhi"), from = 2016)
datasets %>%
map(~ .x %>% mutate(new_wgt = hwgt * nhhmem)) %>%
apply_iqr_top_bottom_coding("dhi", "hwgt") %>%
apply_sqrt_equivalisation("dhi") %>%
run_weighted_atkinson("dhi", "new_wgt", epsilon = 0.5)
# Negative values are not allowed in the variable for which we are computing the Atkinson index.
# If we remove the top and bottom coding stage from the example above, we will get an error with a warning regarding the datasets containing negative values.
datasets[1:4] %>%
map(~ .x %>% mutate(new_wgt = hwgt * nhhmem)) %>%
apply_sqrt_equivalisation("dhi") %>%
run_weighted_atkinson("dhi", "new_wgt", epsilon = 0.5)
} # }