
Compute Relative Poverty Rate
run_weighted_relative_poverty.RdCompute Relative Poverty Rate
Usage
run_weighted_relative_poverty(
  data_list,
  var_name,
  wgt_name = NULL,
  times_median = 0.5,
  type = c("type_4", "type_2"),
  na.rm = TRUE
)Arguments
- data_list
- A named list of data frames. 
- var_name
- A string specifying the variable name (e.g., "dhi", "pilabour"). 
- wgt_name
- A string (optional). The name of the weight variable. If - NULL, equal weights are assumed.
- times_median
- A numeric scalar. The multiple of the median used to define the poverty threshold (default is 0.5). 
- type
- A character vector indicating the percentile estimation type (passed to - compute_weighted_percentiles). Default is- "type_4".
- na.rm
- Logical. Should missing values be removed before computation? Default is - TRUE.
Value
A named list. Each list element is named by country and contains a named numeric vector, where the names are years and the values are the computed statistics.
Examples
if (FALSE) { # \dontrun{
library(lissyrtools)
library(purrr)
library(dplyr)
datasets <- lissyrtools::lissyuse(data = c("de", "es", "uk"), vars = c("dhi"), from = 2016)
# Poverty line is defined at 50%  of the median value by default. 
rel_pvt_rate_50 <- datasets %>% 
 map(~ .x %>% filter(!is.na(dhi))) %>%
 map(~ .x %>% mutate(new_wgt = hwgt * nhhmem)) %>%
 apply_iqr_top_bottom_coding("dhi", "hwgt", type = "type_2") %>%
 apply_sqrt_equivalisation("dhi") %>% 
 run_weighted_relative_poverty("dhi", "new_wgt")
 
print(rel_pvt_rate_50)  
 
 # It can be defined at other values by specifying the argument `times_median`
 
rel_pvt_rate_40 <- datasets %>% 
 map(~ .x %>% filter(!is.na(dhi))) %>%
 map(~ .x %>% mutate(new_wgt = hwgt * nhhmem)) %>%
 apply_iqr_top_bottom_coding("dhi", "hwgt", type = "type_2") %>%
 apply_sqrt_equivalisation("dhi") %>% 
 run_weighted_relative_poverty("dhi", "new_wgt", times_median = 0.4)
 
print(rel_pvt_rate_40)   
} # }